РЕСТАВРАЦИЯ МЕТАЛЛА Методические рекомендации ВНИИР

На страницу Пред.  1, 2  
Новая тема    Ответить       Список форумов Виолити - Антиквариат -> Реставрация и восстановление
Предыдущая тема :: Следующая тема  
Оценка поста:+4
Sergej1969n


Оффлайн
   

Зарегистрирован: 22.01.2014
Сообщения: 3737


СообщениеДобавлено: Sat Feb 18, 2017 13:07:17    Заголовок сообщения: Ответить с цитатой

6.4.1. ОЧИСТКА ПОВЕРХНОСТИ ЗОЛОТА И СЕРЕБРА
Золото, серебро, их сплавы, другие драгоценные металлы слабо взаимодействуют с обычными коррозионно-активными компонентами воздуха, земли и водной среды. В сухом и чистом воздухе серебро и его высокопробные сплавы длительное время остаются внешне неизменными. Поверхность серебра постепенно покрывается тонкой оксидной пленкой, которая достаточно хорошо защищает компактный металл. Во влажном воздухе в присутствии даже следовых количеств сульфидной серы происходит достаточно быстрое потускнение серебра, вызванное образованием оксида и сульфида серебра. То же характерно и для низкопробных сплавов золота.

Коррозионные явления в условиях современных промышленно-развитых городов проявляются значительно быстрее и резче, чем это было 50—70 лет назад. Серебряные изделия часто успевают заметно потускнеть еще на пути от производства к потребителю. Серебряные предметы в музеях, хранящиеся даже в закрытых витринах, за несколько лет покрываются темной с радужными переливами пленкой сульфида.

Так как серебряные оклады, кресты, чаши, подсвечники и другие предметы в действующих церквях постоянно подвергались воздействию потоков теплого воздуха от лампад и свечей, то на металле постепенно оседали продукты неполного сгорания воска и лампадного масла, жировые и восковые загрязнения, а нередко и пленки масляных лаков.

Общие загрязнения органической природы, сажа, копоть могут быть палены с поверхности благородных металлов индивидуальными растворителями (этиловый спирт, уайт-спирит, ацетон, толуол, тетрахлорметан, хладон-113 — растворители приведены по нарастанию активности), их смесями, смывками типа АФТ-1, ВЭПОС и др. Органические растворители применяют в сочетании с некоторыми ПАВ, например, оксидом алкилдиметиламина, лаурилсульфонатом натрия.

Сульфидную пленку с поверхности серебряных изделий можно удалить с помощью растворов, содержащих тиомочевину, например, раствора следующего состава, г:

Тиомочевипа — 80—85

Ортофосфориая кислота — 10—20

Этиловый спирт — 60—65

Эмульгатор ОП-7 (или ОП-10) — 5-10

Вода — До 1 л

Вначале в воде растворяют тиомочевину, затем эмульгатор ОП-7, а затем ортофосфорную кислоту; последним вводят этиловый спирт. Серебряные изделия обрабатывают в этом растворе, а после снятия сульфидной пленки тщательно промывают водой и сушат.

В практике ювелирного дела при изготовлении изделий часто пользуются так называемым «отбеливанием» серебряно-медных сплавов. Процесс отбеливания состоит из двух операций. Серебряные изделия подвергают окислительному обжигу при комнатной температуре около 600 °С до появления на поверхности слоя оксидов меди, охлаждают и погружают в травильный раствор. Травильный раствор приготовляют растворением серной кислоты в холодной воде, причем, если пользуются холодным травильным раствором, то концентрация кислоты может быть доведена до 10%, если же травление проводят в растворе, нагретом до 60 °С, то можно пользоваться более разбавленным (2-5 %-м) раствором серной кислоты. В ходе обработки в растворе серной кислоты поверхность серебряного предмета осветляется, так как оксиды меди растворяются, а поверхность серебряного сплава обогащается серебром.

При неоднократных прокаливаниях и охлаждениях может происходить изменение структуры металла. В этих случаях лучше проводить процесс отбеливания без предварительного обжига в 10%-м растворе серной кислоты с добавкой солей-окислителей, например перманганата калия КМnО4, или в 10%-м растворе гидросульфата калия KHSO4. В качестве соли-окислителя можно вводить в раствор дихромат калия К2Сr2О7, Ко при этом возможно незначительное пожелтение поверхности серебра. Наиболее эффективным окислителем является персульфат калия К2S2O8, который обеспечивает высокую скорость растворения оксидно-сульфидной пленки и получение высокой чистоты поверхности серебра и его сплавов.

Музейные экспонаты и ювелирные изделия с эмалью, камнями нельзя обрабатывать в кислотах, поэтому для удаления с их поверхности оксидов меди и сульфида серебра используют методы механической очистки (с применением различных абразивов) или химической очистки.

Для очистки потускневших изделий из серебра и его сплавов применяют цианидные растворы, концентрированные растворы тиосульфата натрия, разбавленные растворы гидроксидов щелочных металлов и аммиака, растворы динатриевой соли этилендиаминтетрауксусной кислоты — трилона Б.

Простейшим способом является очистка серебра с помощью кашицы из мела в водном растворе аммиака. Тампоном этот состав наносят на поверхность изделия, растирают и после высыхания удаляют волосяной щеткой, кистью или мягкой тканью. При этом происходит растворение сульфида серебра. Мел является абразивом, и после такой обработки может несколько нарушиться полировка поверхности изделия. Поэтому применять меловой состав в реставрации следует с осторожностью.

Старинным и очень эффективным средством очистки поверхности серебра является 10 %-й раствор цианида калия, в который погружают на серебряной или латунной проволоке очищаемые серебряные изделия После обработки изделия тщательно промывают сначала в растворе щелочи, а затем в проточной воде.

В аналогичных условиях в цианидном растворе можно проводить очистку и золотых изделий.

Цианидный способ очистки золота и серебра может быть усовершенствован. На скорость очистки и качество получаемой поверхности золотых и серебряных изделий благотоворно влияет введение в рабочий раствор окислителей — хлора, иода, пероксида водорода, кислорода. Наиболее эффективным окислителем является персульфат калия K2S2O8, который обеспечивает большую скорость процесса очистки и достижение высокой чистоты поверхности золота, серебра и их сплавов.

Применение цианидного способа очистки поверхности благородных металлов ограничивается чрезвычайной ядовитостью всех цианидов и содержащих их промывных вод. В настоящее время цианиды заменяют роданидами. Применяют концентрированные и 10%-е растворы роданида калия или аммония.

Специфическим реактивом для очистки поверхности серебра от оксидно-сульфидных и хлоридных образований является тиосульфат. натрия Na2S2O3. Влажную соль наносят на очищаемую поверхность и через некоторое время удаляют кистью или мягкой тканью, а изделие промывают и высушивают. Для придания изделию прежнего декоративного вида его обрабатывают далее мягкой тканью с мелкозернистым оксидом магния.

Особенно эффективны для очистки серебряных и золотых изделии от оксидных и сульфидных пленок растворы трилона Б — динатриевой соли этилендиаминтетрауксусной кислоты. 10%-й водный раствор трилона Б имеет нейтральную реакцию, поэтому компактный металл он растворяет в десятки раз медленнее, чем сульфиды и оксиды серебра. Растворы трилона Б нетоксичны, хорошо совмещаются с водорастворимыми ПАВ, поэтому кроме оксидно-солевых загрязнений удаляют также и органические загрязнения. Подобное действие оказывают также 15%-й раствор лимонной кислоты, аммиачный раствор тиогликолевой кислоты.

Многие составы для очистки серебра содержат тиомочевину, часто смеси с кислотами. Так, рекомендовано средство следующего состава, %:

Тиомочевина — 8

Соляная кислота — 5

ПАВ — 0,5

Для предотвращения повторного образования в процессе очистки сульфида на поверхности серебра через раствор следует продувать воздух.

Неравномерно окрашенные сульфидные пленки с поверхности серебряных изделий можно удалить их промывкой в водном растворе тиомочевины, эмульгатора ОП-7 или ОП-10 и этилового спирта. Вначале в воде растворяют тиомочевину, затем эмульгатор и последним вводят этиловый спирт.

Разработаны составы на основе тиомочевины и фосфорной кислоты. Так, промышленностью выпускается препарат Аметисто, успешно применяемый в музейной практике для очистки изделий из серебра.

Описанные выше составы для очистки поверхности серебра являются водными растворами. При обработке сложнопрофилированных поверхностей экспонатов из серебра удаление остатков растворов из углублений затруднительно, а в случае, если пластинки серебра закреплены на поверхности дерева или ткани, их вообще нельзя обрабатывать водными растворами. Поэтому применяют очищающие составы на полимерной пленкообразующей основе — водные растворы или водоразбавляемые дисперсии ПВС, ПВА, сополимеров дибутилмалеината с винилацетатом, сополимеров винилхлорида и винилиденхлорида, синтетического каучука, Na-КМЦ с добавлением небольших количеств ПАВ. В зависимости от полимера в эти составы можно вводить и различные специфические добавки. Так, в латексы на основе синтетического каучука или ПВА можно вводить фосфорную кислоту и тиомочевину, причем дисперсная система при этом не разрушается. Находит применение, например, композиция, содержащая латекс ПВА или каучука СКС-30, тиомочевину, ортофосфорную кислоту, глицерин и воду. Состав, включающий латекс ПВА или каучука СКС-30, едкое кали, синтанол ДС-10, глицерин и воду, эффективен для удаления воско-жировых загрязнений, копоти и сажи. Глицерин добавляется для снижения адгезии образующейся пленки полимера к поверхности очищаемого изделия.

Для каждого из латексных составов существует оптимальное соотношение компонентов. Если уменьшать содержание добавок, то процесс очистки замедляется, затрудняется удаление образующейся пленки. При увеличении содержания добавок выше определенного предела теряется прочность пленки или происходит коагуляция латекса. Очень существенна роль воды в подобных составах: кислоты, комплексообразующие соединения, ПАВ взаимодействуют с загрязнениями и оксидно-солевыми пленками только в присутствии воды. При испарении воды, сопровождающимся образованием пленки, воздействие очищающего средства на поверхность прекращается, что позволяет в определенных пределах регулировать продолжительность воздействия.

Очищенные поверхности серебра и особенно его низкопробных сплавов необходимо защитить от воздействия агрессивных компонентов атмосферы. Для этой цели рекомендуются различные аминоалкил (алкокси) силиконы, которые работают в кислых, щелочных и нейтральных средах и в воздушной среде. Серебряные изделия окунают в 0,05—0,1 %-й спиртовый раствор или наносят этот раствор распылением, после чего высушивают.

Хорошим ингибитором коррозии серебра является бензотриазол. Его применяют в виде спиртового раствора индивидуально или, что более эффективно, в сочетании с тетраэтоксисиланом и метилфенилсилоксановым олигомером. Очищенные серебряные изделия обрабатывают в таком растворе. При этом образуется пленка, обладающая хорошими защитными и механическими характеристиками.

Существуют специфические методы очистки и восстановления полировки на изделиях из золота, в том числе ажурных и изготовленных из тонкой фольги. Так, находит применение электрохимический процесс анодного полирования золотых изделий. Изделия при комнатной температуре погружают в раствор, содержащий 90 г тиомочевины и 10 мл концентрированной серной кислоты в 1 л воды, и подключают к аноду через титановые подвески, в качестве катодов используют листовой титан. При плотности тока 3—5 А/дм2 обработка длится 3—5 мин. При этом практически все загрязнения удаляются с поверхности сложнопрофилированного изделия. По завершении процесса изделия промывают водой, депассивируют в растворе пероксида водорода, подкисленном серной кислотой, вновь промывают водой и сушат.

Особые сложности возникают при реставрации археологического серебра. В древние времена широко использовали следующие сплавы серебра: Ag — Си, Ag —Pb и Ag — Pb — Сu с содержанием 1—6% меди и 0,01—1,6% свинца. Такие сплавы наряду с обычной хлоридной коррозией с образованием на поверхности хлорида серебра претерпевают естественное старение с потерей пластичности. Восстановить пластичность металла можно путем отжига сплавов при температурах, которые зависят от состава сплава и наличия на его поверхности новообразований. Если с поверхности полностью удален хлорид серебра, то отжиг в атмосфере аргона бинарного сплава Ag — Сu проводят при температуре не выше 700 °С в течение 1—2 ч. При наличии на поверхности металла хлорида серебра, а также при содержании в сплаве свинца отжиг осуществляется при более низких температурах, так как хлорид серебра плавится при 455 °С, а сплавы, содержащие более 1,5 % свинца, — при 300 °С Таким образом, перед восстановлением пластичности археологического серебра путем нагревания необходимо провести качественный и количественный анализ состава серебряного сплава.

Первоисточник: ХИМИЯ В РЕСТАВРАЦИИ. СПРАВОЧНОЕ ПОСОБИЕ. М. К. Никитин, Е. П. Мельникова; Л., 1990
Вернуться к началу
Профиль Профиль VIOLITY
Sergej1969n


Оффлайн
   

Зарегистрирован: 22.01.2014
Сообщения: 3737


СообщениеДобавлено: Sat Feb 18, 2017 15:23:46    Заголовок сообщения: Ответить с цитатой

faberje777 писал(а):
Sergej1969n трилон Б 10%

faberje777 писал(а):
Уже всё придумали до нас-чистка проводится под контролем(любая),в данном случае-контроль-ополаскивание-смена рабочей жидкости по мере загрязнения-промывка

Спасибо большое вам за дельный совет КАК ПОЧИСТИТЬ ЗОЛОТО 300 ПРОБЫ ОТ ЧЕРНОГО НАЛЕТА... Сделал 10% подогретый раствор с трилоном на минералке, поменял два раствора за час, и под конец сода и шампунь зубной щеткой - Чернота вся убралась... С Уважением.
Вернуться к началу
Профиль Профиль VIOLITY
faberje777


Оффлайн
   

Зарегистрирован: 01.01.2017
Сообщения: 9


СообщениеДобавлено: Tue Feb 28, 2017 23:47:09    Заголовок сообщения: Ответить с цитатой

Спасибо за благодарность
Вернуться к началу
Профиль Профиль VIOLITY
yurchic


Оффлайн
   

Зарегистрирован: 06.07.2014
Сообщения: 137


СообщениеДобавлено: Tue May 30, 2017 00:50:25    Заголовок сообщения: Ответить с цитатой

+1 Спасибо, очень много полезной информации!!!
Вернуться к началу
Профиль Профиль VIOLITY


Olexandr_7


Оффлайн
   

Зарегистрирован: 15.08.2022
Сообщения: 1


СообщениеДобавлено: Wed Feb 07, 2024 11:29:48    Заголовок сообщения: Re: РЕСТАВРАЦИЯ МЕТАЛЛА Методические рекомендации ВНИИР Ответить с цитатой

Forester писал(а):
Встретилась мне в открытых источниках вот такая методичка.
Текст и рисунки по материалам сайтов "Поиск легенд", а также "консервация вместо реставрации".

В методичке настолько полно и подробно описано все по теме, что считаю полезным ознакомиться с нею всем интересующимся, и привести ее на нашем ресурсе полностью.

Это шикарная инструкция по восстановлению и консервации всех основных металлов находок, и цветных и черного, всеобъемлющая и полная.

Рисунков всего 2, они в конце поста, но и без них все понятно описано.

"РЕСТАВРАЦИЯ МЕТАЛЛА. Методические рекомендации. ВНИИР. сост. М.С.Шемаханская М., 1989"

Настоящие рекомендации составлены канд. техн. наук, реставратором 1 категории М.С.Шемаханской на основе экспериментальных и практических работ, проведенных в секторе методов реставрации и консервации металла, а также обобщения отечественного и зарубежного опыта по проблемам реставрации металла. Приведены справочные данные по свойствам металлических сплавов. Рекомендации рассчитаны на реставраторов по металлу, археологов и музейных хранителей. Утверждены Ученым советом ВНИИР. (Протокол № 2.2 от 28 ноября 1988 г.).


ВВЕДЕНИЕ
Большое разнообразие металлов и сплавов, видов их разрушений, особенностей изготовления предметов и их декоративной отделки требуют от реставратора специальных знаний и навыков работы. Объем издания позволил дать лишь общие рекомендации; не включены описания ручных операций, таких, как пайка, рихтовка и др., которыми можно овладеть только на практике. Вместе с тем работа с разрушенным металлом требует знания процессов коррозии, поэтому приведены некоторые необходимые данные по особенностям разрушения металлов в зависимости от различных причин. Предлагаемые рекомендации не выполняют функций учебника - научить реставрировать экспонаты из металла, так как только опыт может помочь реставратору выбрать наиболее подходящий вариант обработки того или иного экспоната. Более широкие знания и навыки практической работы реставратор может и должен получать во время стажирования.

В методических рекомендациях рассмотрены способы реставрации двух групп металла: археологического и, условно, музейного. К группе музейного металла относятся все предметы, никогда не находившиеся в почве и хранящиеся в закрытом помещении. Экспонаты, находящиеся на открытом воздухе, т.е. подверженные атмосферной коррозии, не рассматриваются.

Теория реставрации прикладного искусства до сих пор не разработана. Не сформулированы эстетические принципы, не определены границы допустимого реставрационного вмешательства в памятник, нет устоявшейся терминологии. Например, до сих пор нет однозначного ответа на вопрос, какой внешний вид должен быть у серебряных предметов - нужно ли их очищать или правильнее сохранить темную поверхностную пленку сульфида серебра; можно ли с археологических предметов из меди и медных сплавов удалять все продукты коррозии и лишать тем самым находки атрибута археологического памятника и т.д. Методические рекомендации не дают ответа на все эти вопросы. Начинающие реставраторы должны помнить, что "реставрация" применительно к металлу прежде всего консервация, связанная со стабилизацией материала.

СОДЕРЖАНИЕ
ПРАВИЛА ТЕХНИКИ БЕЗОПАСНОСТИ ПРИ РЕСТАВРАЦИОННЫХ РАБОТАХ С МЕТАЛЛАМИ
1. СВЕДЕНИЯ О КОРРОЗИИ МЕТАЛЛОВ
2. ИССЛЕДОВАНИЕ ПРЕДМЕТОВ ИЗ МЕТАЛЛОВ
3. ОБЩИЕ МЕТОДЫ ОЧИСТКИ ОТ ЗАГРЯЗНЕНИЙ И ПРОДУКТОВ КОРРОЗИИ
4. ИНГИБИТОРЫ КОРРОЗИИ
5. МЕДЬ И СПЛАВЫ ИЗ МЕДИ
5.1. Некоторые сведения об истории медных сплавов
5.2. Коррозия меди и медных сплавов
5.3. Свойства меди и продуктов ее коррозии
5.4. Электролитическая и электрохимическая очистка меди и ее сплавов
5.5. Химическая очистка
5.6. Стабилизация
5.7. Очистка изделий из меди и ее сплавов, украшенных другими металлами
5.8. Реставрация полностью минерализованного сыпучего археологического металла
5.9. Реставрация изделий с сохранением патины
5.10. Патинирование
6. СЕРЕБРО
6.1. Некоторые сведения из истории серебра
6.2. Коррозия серебра и его сплавов
6.3. Свойства серебра и продуктов его коррозии
6.4. Очистка от загрязнений
6.5. Очистка потемневшего музейного серебра
6.6. Реставрация археологического серебра
7. ЗОЛОТО
8. СВИНЕЦ
9. ОЛОВО
10. ЖЕЛЕЗО
11. ХРАНЕНИЕ ПРЕДМЕТОВ ИЗ МЕТАЛЛА
СПИСОК РЕКОМЕНДУЕМОЙ ЛИТЕРАТУРЫ


ПРАВИЛА ТЕХНИКИ БЕЗОПАСНОСТИ ПРИ РЕСТАВРАЦИОННЫХ РАБОТАХ С МЕТАЛЛАМИ

Реставратор имеет дело с веществами, обладающими различными физико-химическими и токсическими свойствами. Знание свойств применяемых химических веществ, методов безопасного обращения с ними, правильная организация работ, когда все операции с химически активными, огне- и взрывоопасными веществами проводятся с соблюдением мер безопасности, помогут избежать несчастных случаев.

Общие правила безопасности

1. Все операции, связанные с применением ядовитых и огнеопасных веществ, с кислотными и щелочными растворами, необходимо проводить в специально оборудованных комнатах с вытяжным устройством при работающей вентиляции.

Вентиляция может быть местной (вредные вещества удаляются только из рабочей зоны), общеобменной (вредные вещества удаляются из всего объема помещения) и совмещенной.

При выполнении операции пайки и других химико-термических работ воздухообмен должен быть совмещенный.

Вентиляцию следует включать за 20-30 мин. до начала работ и выключать через 20-30 мин. после их окончания.

2. При механической и химической очистке металла необходимо применять средства индивидуальной защиты: респираторы и специальные защитные очки. Для этой цели подходят респираторы марки Ф-46к, Ф-57, прогивопылевой бесклапанный респиратор ШБ-II, Астра-2, универсальный респиратор РУ-60. Последняя модель может быть с очками и без очков. К респиратору РУ-60 имеются патроны различных марок, каждый из которых предназначен для защиты от определенной группы токсических веществ. Так патрон марки А предназначен для защиты от паров толуола, ксилола, ацетона, бутилацетата, бензина и др. органических паров, а марки КД от паров аммиака и сероводорода. Для защиты глаз от пыли и вредных веществ применяются защитные очки следующий марок: очки защитные С-2 различных типов, очки защитные герметичные ПО-2, очки для защиты от ультрафиолетовых лучей УЛВ-М и УДЦ-М.

3. Механическую работу с археологической бронзой я сплавами, содержащими свинец, допустимо проводить только при наличии местного вытяжного устройства.

4. Во время работы с кислотами, щелочами, растворителями и другими едкими веществами необходимо предохранять кожу рук. В этих целях можно использовать резиновые перчатки, когда же это неудобно (например, при склеивании или других тонких реставрационных операциях), можно пользоваться защитными пастами и мазями. Для защиты кожи от растворителей, лаков, красок, смол рекомендуются специальные пасты ХНОТ-б ,ЯЛОТ", мазь Селисского, мази ПМ-1, ИЭР-Г и "Миколан". Для защиты кожи от воды и водных растворов кислот, щелочей, солей - паста Чумакова и паста ИЭР-2. Кроме того, можно самим приготовить защитные "биологические перчатки" по следующей рецептуре:

казеин - 30 г.

аммиак (25%) - 1 г.

глицерин - 30 г.

спирт 90° - 85 г.

вода - 85 г.

Залитый водой казеин (а не казеиновый клей) ставят на водяную баню или в термостат при 60-70°С на 2-3 часа до полного набухания казеина. Вся масса время от времени перемешивается. В набухший казеин при постоянном перемешивании вводится аммиак, в полученную однородную клеящую массу небольшими порциями добавляются (также при постоянном перемешивании) вначале глицерин, а затем спирт. Перемешивание продолжается до образования однородной жидкости. Раствор "невидимые перчатки", готовый к употреблению, хранят в банках с притертыми крышками. Срок хранения раствора 5-10 дней. Раствор "невидимые перчатки" приготовляют в чистой сухой эмалированной посуде. Мешалка должна быть из органического стекла или фарфора. Приготовленная таким образом защитная жидкость наносится на руки перед началом работы и. после обеденного перерыва. Застывая (в течение 1-2 мин.), она образует стойкую бесцветную или светло-коричневую тонкую пленку в виде перчаток, легко смываемую теплой водой. Перед нанесением жидкости руки должны быть чистыми и сухими. После окончания работа пленку смывают водой. Удалять производственные загрязнения с кожи рекомендуется концентратами ОП-10 илиОП-7 или пастой для мытья рук.

5. При приготовлении растворов кислот разных концентраций следует помнить, что этот процесс сопровождается большим вселением тепла. Поэтому кислоту нужно постепенно добавлять в воду, а не наоборот!

6. Запрещается нагревать низкокипящие горячие жидкости (ацетон, эфиры, спирты и т.п.) в открытых сосудах на газовых горелках или вблизи от источников открытого огня. Для нагревания допустимо применять закрытые электроплитки.

7. Остатки кислот, щелочей и других едких или ядовитых веществ перед сливом в канализацию необходимо нейтрализовать. Сливать в раковину химические вещества без предварительной нейтрализации категорически запрещается.

8. Случайно пролитую на пол или оборудование кислоту следует немедленно смыть водой и остатки нейтрализовать сухой кальцинированной содой до прекращения реакции. Пролитую щелочь необходимо смыть водой и нейтрализовать борной или уксусной кислотой.

9. Химические реактивы следует хранить в определенном, предназначенном для этого месте, в закрытых банках, склянках или в других сосудах. На каждом сосуде должна быть этикетка с точным названием вещества, его концентрации и т.д. Хранение склянок с реактивами без пробок, этикеток или в неисправной таре запрещается.

Концентрированные кислоты (азотную, серную, соляную и т.п.) и реактивы (аммиак), способные выделять газ, необходимо хранить в вытяжном шкафу. При открывании сосудов следует соблюдать осторожность и вынимать пробку из них постепенно.

Легковоспламеняющиеся и горячие жидкости: бензин, ацетон, скипидар, толуол, ксилол, амилацетат, этиловый и изопропиловый спирты следует хранить в толстостенных сосудах в металлическом, плотно закрывавшемся ящике. С ними вместе нельзя хранить азотную и серную кислоты и марганцевокислый калий.

В рабочем помещении не рекомендуется хранить большие количества клеев, композиции и отвердителей. Хранить их надо в плотнозакрывающейся таре под тягой.

10. Во избежание отравлений категорически запрещается хранить и принимать пищу в рабочих комнатах.


1. СВЕДЕНИЯ О КОРРОЗИИ МЕТАЛЛОВ

Для правильного определения причин разрушения металла, из которого сделан предмет, приостановления и предотвращения этого процесса необходимо знать некоторые основы теории коррозии и защиты металлов. Умение различить виды коррозии необходимо как реставратору для правильной оценки состояния металла при составлении точного описания в реставрационном паспорте и выбора наиболее подходящего метода реставрации, так и хранителю для определения начавшихся изменений и опасности этих изменений для сохранности предметов.

По механизму разрушения различают химическую и электрохимическую коррозию.

Химическая коррозия происходит при контакте металла с сухими газами или воздухом, в жидкостях-не-электролитах, т.е. не проводящих электрический ток. К этому виду коррозии относится, в частности, окисление металлов - образование на поверхности тонкой пленки оксидов, приводящей к пассивности. Электрохимическая коррозия возникает при наличии физико-химической неоднородности поверхности металла или среды в присутствии жидкости, проводящей ток, - электролита. Так как на поверхности металла практически всегда находится пленка влаги, часто тончайшая, практически невидимая, содержащая растворенные соли, которые попадают в нее из атмосферы, с пылью, из почвы, т.е. проводящая ток, а поверхность металла не бывает однородной, то металлические предметы разрушаются вследствие электрохимической коррозии.

При электрохимической коррозии металлов происходит два основных процесса:

1) анодный процесс - переход металла в раствор в виде гидратированных ионов или его окисление; при этом в металле остается соответствующее число электронов;

2) катодный процесс - поглощение появившихся в металле избыточных электронов деполяризаторами, которыми могут быть атомы, молекулы или ионы раствора, подвергающиеся восстановлению на всей поверхности металла или отдельных его участках.

Переход ионов металла в раствор (разрушение)

Пример анодной реакции:

Fe ? Fе2+ + 2е окисление железа

В общем виде: Ме ? Меn++nе– .

Примеры катодных реакций: 2Н+ + 2е ? 2H? Н2 - восстановление ионов водорода в кислой среде;

2H+ + 2Н2О + 4е ? 4ОН- - восстановление растворенного кислорода в нейтральной или щелочной среде.

Таким образом разрушаются анодные участки поверхности. Теоретически для анодной реакции должно было бы наступить равновесие а следовательно, и прекращение разрушения. Практически это равновесие не достигается в силу того, что в ходе коррозии химический состав раствора вблизи металлической поверхности меняется в результате вторичных реакций, например, образования гидроокисей металлов, удаления ионов от поверхности, выделения газов.

Идеальное равновесие и прекращение растворения могли бы быть достигнуты только в случае полной химической и физической однородности как металла, так и электролита, и в случае невозможности побочных реакций ионов металла. Так как такая идеальная однородность недостижима, то практически процесс растворения или коррозия может продолжаться, хотя и очень медленно, до полного разрушения металла.

Таким образом, процесс электрохимической коррозии очень приближенно можно уподобить процессу, происходящему в простом гальваническом элементе. Электродвижущая сила гальванического элемента зависит от активности, проявляемой в реакциях вытеснения металлов друг другом из растворов их солей.

В зависимости от этой активности металлы располагаются в следующий электрохимический ряд напряжений: Li, К, Са, Nа, Mg, Be, Al, Ti, Zr, Mn, Nb, Zn, Cr, Fe, Cd, Co, Ni, Mo, Sn, Рb, Н, Cu, Hg, Pd, Ag, Pt, Аu. Каждый левее стоящий в ряду металл может вытеснять все следующие за ним металлы из растворов их солей, настоящее время не существует способов экспериментального измерения абсолютного значения потенциала металла, поэтому его значение в справочниках приводится относительно, например, водородного электрода сравнения. При контакте разнородных металлов, а такие случаи, в практике достаточно часты, например инкрустация железа медью, серебром или золотом, серебряное покрытие на медном сплаве и др. возникает особый вид электрохимической коррозии - контактная коррозия.

По величинам потенциалов двух металлов в данном электролите можно указать, какой из них будет замедлять коррозию другого, а какой ускорять: металл, имеющий более положительный потенциал, т.е. стоящий правее в ряду напряжений, ускоряет катодный процесс и способствует коррозии металла, с которым находится в паре. В реальных условиях металлы могут покрываться оксидными пленками, что меняет их электрохимическое состояние, и опытные данные могут противоречить теоретическим предсказаниям. При контакте металлов коррозия наиболее интенсивно происходит вблизи места соединения двух разнородных металлов. Контактом разных металлов объясняется быстрое химическое разрушение спаянных изделий именно по месту спайки. Кроме того, на скорость коррозии анодного металла в контактной паре оказывает влияние соотношения анодных и катодных площадей. Например, в случае соединения медных листов стальными заклепками последние за короткое время подвергаются ному разрушению. При обратной картине, когда стальные листы соединены медными заклепками, наблюдается незначительный рост коррозии вблизи медных заклепок. Известно покрытие железа цинком и оловом. Исходя из электрохимического ряда напряжений цинк должен защищать железо, тогда как олово - усиливать коррозию. Оловянное покрытие чисто механически защищает железо и достаточно в одном месте нарушить цельность олова, как , железо начинает разрушаться. Иначе обстоит дело с цинковым покрытием: до тех пор, пока не растворится весь цинк, железе не корродирует. Предотвращают контактную коррозию подбором соответствующих материалов с малой разностью потенциалов, электрической изоляцией различных металлов друг от друга и др. Скорость электрохимической коррозии зависит от внутренних и внешних факторов. К внутренним относятся факторы, связанные с природой металла, его химическим составом, структурой, наличием неметаллических включений. Очень чистые металлы медленно разрушаются. Инородные включения заметно понижают стойкость металлов, двухфазные сплавы корродируют гораздо быстрее, чем однофазные. Коррозия быстрее развивается по напряжённым местам металлических изделий, чем по ненапряженным - более деформированные участки становятся анодами и подвергаются большему разрушению; литой металл разрушается меньше кованого. Тонкая обработка поверхности (шлифовка, полировка), как правило, повышает коррозионную стойкость металлов, облегчая образование на поверхности защитных пленок.

К внешним факторам относятся природа и свойства коррозионной среды и ее параметры.. На скорость электрохимической коррозии влияет концентрация водородных ионов в растворе электролита (т.н. рH среды). Для каждого металла имеется определённое значение рН раствора, при котором скорость коррозии минимальна. Известно, например, что железо пассивно в молочной среде. Значительное влияние оказывает температура, так как она меняет скорость диффузии и растворимость продуктов коррозии.

В зависимости от внешних условий различают атмосферную коррозию и почвенную.

Атмосферной коррозии подвергаются памятники на открытом воздухе, в условиях музейного хранения и экспозиции. Атмосферная коррозия разделяется на три типа, хотя это деление условно, так как в реальных условиях возможен переход одного типа коррозии в другой:

1) "Сухая" коррозия протекает при полном отсутствии следов влаги на поверхности металла. Большинство металлов при взаимодействии с кислородом воздуха или другими окислителями в сухой атмосфере покрываются пленкой оксида. По своему механизму этот процесс является чисто химическим и не приводит к сколько-нибудь существенным разрушениям металла. Толщина плёнок меняется в широких пределах:

а) тонкие (невидимые), толщина которых от нескольких до 400 А;

б) средние (дающие цвета побежалости), толщина которых от 400 до 5000 А;

в) толстые (видимые), толщина которых свыше 5000 А.

В образующихся на металлах пленках при их утолщении могут возникать внутренние напряжения, которые вызывают механическое разрушение пленок с потерей защитных свойств, так как защитными свойствами обладают только сплошные пленки. В двухкомпонентном сплаве окисление начинается с образования оксида - менее благородного компонента сплава, т.е. менее термодинамически устойчивого (например, в низкопробном серебре окисляется медная составляющая сплава).

2) "Влажная" атмосферная коррозия - коррозия при наличии на поверхности металла тончайшей, невидимой пленки влаги, которая образуется в результате конденсации при относительной влажности воздуха ниже 100%. С понятием относительной влажности часто приходится сталкиваться на практике, поэтому напомним, что относительной влажностью называется отношение фактического содержания водяных паров в воздухе к максимально возможному в данных условиях. Средняя относительная влажность в городах составляет 70-80% в отдельные летние месяцы -60-65%. Влажность на этом же уровне держится в музейных залах и запасниках. При таком значении имеются все условия для увлажнения металлической поверхности. Конденсации способствуют перепады температуры. Например, при температуре +25°С и влажности 50% конденсат образуется при охлаждении металла до +14°С если влажность воздуха 90%, то конденсат образуется при перепаде температур в 1°С, т.е. уже при +24°С. Влажность, при которой резко возрастает скорость коррозии называется критической. Критическое значение относительной влажности равно примерно 70%, но при некоторых условиях значительно ниже.

Величина критической влажности меняется в зависимости от состояния поверхности металла и состава атмосферы. Так при наличии в атмосфере сернистого газа или других активных реагентов она может снизиться до 50%.

3) "Мокрая" атмосферная коррозия - коррозия при наличии на поверхности металла видимой пленки влаги. Атмосферная коррозия этого типа наблюдается при относительной влажности воздуха около 100%, когда имеется капельная конденсация влаги на поверхности металла, а также при непосредственном попадании влаги на металл, например, во время дождя.

Конденсация влаги настолько вредный процесс, что металлы, находящиеся под навесом, могут корродировать интенсивнее, чем условиях открытой экспозиции, где дождь быстро смывает кислоты, образовавшиеся на поверхности при конденсации, т.к. влага, конденсирующаяся на поверхности металла вечером при понижении температуры, обладает часто большей кислотностью, чем дождевая вода.

Наиболее агрессивными примесями воздуха являются сернистый газ, хлористый натрий, сероводород, аммиак, пары соляной кислоты. Ускорение коррозии наблюдается при концентрации сернистого газа порядка 10-4 – 10-5 объемн. %. Сернистый газ попадает в атмосферу вместе с продуктами сжигания сернистого топлива, хлористый натрий - за счет соли, уносимой ветром с поверхности океанов и морей. Концентрация хлористого натрия в воздухе меняется в широких пределах и сильно зависит от удаленности от моря. В приморских районах повышенная скорость коррозии объясняется высокой влажностью и наличием в воздухе частичек хлористого натрия. Например, содержание хлор-иона в дожде, снеге, тумане Одессы достигает 440 мг/л. При попадании на поверхность железа хлористого натрия критическое значение относительной влажности задает до 58%.

Влияние углекислого газа неоднозначно. В некоторых случаях его присутствие даже тормозит коррозию. Сильно ускоряет коррозию газообразный хлор. Причем, характерно, что в присутствии этого газа коррозия возрастает и в относительно сухих атмосферах (влажность менее 42%). Сероводород при повышенной влажности также является весьма сильным реагентом. Кроме газов и паров кислот, на процесс коррозии большое влияние оказывают твердые частицы, осаждающиеся на поверхности металла из воздуха. Одни из них (коррозионно-активные) оказывают прямое воздействие на металл, другие, хотя и не отличаются коррозионно-активными свойствами, например, частички угля, приводят к ускорению коррозии благодаря тому, что они способствуют адсорбции на поверхности металла сернистого газа. Вот почему недопустимо отложение пыли и грязи на металлических предметах в музеях. Особенно опасными местами являются поднутрения на высоких рельефах. Известны случаи развития коррозионного процесса на бронзовой скульптуре, стоящей в залах и не защищенной витринами.

Почвенная коррозия. Почвенной коррозии подвергается археологический металл. Сохранность такого металла гораздо xyже, чем предметов, никогда не соприкасавшихся с почвой. Каковы же особенности почвы как коррозионной среды? Наличие влаги и растворенных в ней солей делает почву электролитом и вызывает электрохимическую коррозию металла. Увеличение влажности грунта, затрудняя доступ кислорода, замедляет пассивацию металла. В зависимости от содержания в почвенной влаге растворимых солей грунтовые воды подразделяются на пресные (до0,1%), солоноватые (от 0,1 до 1%), соленые (от 1 до 5%) и рассолы (от 5 до 40%). Большая часть соединений находится в грунтовых водах в виде ионов. Содержание аниона хлора в незасоленных почвах незначительно, благодаря хорошей растворимости и вымываемости его солей. В засоленных почвах количество хлоридов, сульфатов, карбонатов достигает значительной величины. Величина рН изменяется в зависимости от общей минерализации грунтовых вод и присутствия в них кислот, кислых и основных солей. По величине рН различают сильнокислые почвы (3-4,5), кислые (4,5-5,5), слабокислые (5,5-6,5), нейтральные (6,5-7), слабощелочные (7-7,5)-, щелочные (7,5-8,6) и сильно-щелочные (8,5-9). Содержание кислорода, углекислого газа и азота в почвенном и атмосферном воздухе различно. В почвенном воздухе наблюдается более высокое содержание углекислоты (0.1-0.5%) по сравнению с атмосферным (0,03%). Это обусловлено протекающими в почве биохимическими процессами. Содержание кислорода в почве колеблется от 2 до 0,1% (в атмосфере 21%). Почвенный воздух всегда насыщен парами воды. Его относительная влажность обычно около 100%. Коррозионную активность почвы с достаточной точностью характеризует величина электропроводности, которая зависит от влажности, состава и количества солей и структуры. Неоднородность почвы по структуре, плотности, составу, влажности, кислотности и др. приводит к усилению неравномерности коррозии. Коррозионная активность почвы меняется во времени. Кроме того, существуют местные причины, которые влияют на агрессивность - применение удобрений, повышение концентрации вредных газов в атмосфере вблизи индустриальных центров, понижение уровня почвенных вод в результате строительства ирригационных сооружений и др.

Биокоррозия. Микроорганизмы, находящиеся в большом количестве в почвах, могут вызвать ускорение разрушения черных металлов. Особенно активны анаэробные сульфовосстанавливыающие бактерии, которые развиваются в илистых, глинистых и болотных почвах.

Из аэробных бактерий опасны серобактерии, которые в процессе своей жизнедеятельности окисляют сероводород в серу, а затем в серную кислоту. Образующаяся серная кислота вызывает интенсивную коррозию.

Морская коррозия. Морская вода является хорошо аэрированным (8 мг/л 02), нейтральным ( pH 7,2-8,6) электролитом с высокой электропроводностью, обусловленной растворенными солями, главным образом хлоридами и сульфатами натрия, магния, кальция и калия. Общая засоленность морской воды колеблется от I до 4%. В морской воде металлические предметы покрываются слоем растительных и животных организмов. Вместе с кремнекислыми соединениями и углекислым кальцием они дают осадки на металле, которые могут оказывать защитное действие. На предметах, находящихся в зоне периодического смачивания, коррозия протекает с повышенной скоростью за счет облегченного доступа кислорода к поверхности металла.

По характеру коррозионного разрушения различают: 1) сплошную или общую коррозию, и 2) местную коррозию, Сплошная коррозия бывает равномерной, которая протекает с одинаковой скоростью по всей поверхности металла. Равномерной по толщине окисной пленкой покрываются металлические предметы, находящиеся в музейных, условиях, за которыми тщательно ухаживают: на них не скапливается пыль, не попадают агрессивные вещества, например с рук или при уборке помещения. Сплошная коррозия бывает и неравномерной и протекает с неодинаковой скоростью на различных участках поверхности металла. К этому виду коррозии относится разрушение археологического металла. В атмосферных условиях до образования патины коррозия также имеет неравномерный характер.

Местная коррозия приводит к разрушению отдельных участков поверхности металлического предмета. Коррозия может иметь вид тёмных пятен, точек (питтингов), язв в виде раковин. Это наиболее часто встречающиеся повреждения музейного металла. К этому виду разрушения относятся случаи "бронзовой болезни", которые будут подробно рассмотрены в разделе "Разрушение медных сплавов". К местной коррозии относится также межкристаллическая коррозия - разрушение по границам кристаллитов (этот вид коррозии опасен тем, что, не меняя внешнего вида, металл теряет прочность и пластичность), сквозная коррозия, коррозионное растрескивание - разрушение металла при одновременном воздействии коррозионной среды и внешних или внутренних механических напряжений.

При соприкосновении с предметом не защищенных перчатками рук происходит взаимодействие металла с потом. Нередки случаи образования на поверхности музейного экспоната коррозионного пятна, воспроизводящего отпечаток пальца.

Пот содержит кроме воды (98-99% по массе) молочную кислоту, мочевину, хлорид натрия, что определяет его агрессивность.

2. ИССЛЕДОВАНИЕ ПРЕДМЕТОВ ИЗ МЕТАЛЛОВ

Перед началом реставрации предмет необходимо тщательно изучить: определить, из какого металла или сплава сделан предмет, его сохранность, наличие или отсутствие металлического ядра, толщину слоя продуктов коррозии, наличие активных очагов. Это поможет рассчитать общий объем работы, последовательность и методы обработки, сформулировать реставрационное задание. Необходимо также уяснить особенности изготовления предмета, способ соединения отдельных элементов, наличие на предмете других материалов и другие технологические особенности. При таком обследовании выявятся следы предыдущих чинок и реставраций, возможные переделки вещи. Иногда реставратору необходимо обратиться к архивным документам для выяснения истории предмета, и к старым, иногда дореволюционным, публикациям в поисках аналогий. Особенно это важно, когда предмет имеет переделки и утраты, а создание целостного облика требует реконструкции. Любая, даже самая незначительная или конструктивно необходимая реконструкция требует строго научного, документального обоснования.

Исследование предмета начинается с визуального осмотра невооруженным глазом. Продукты коррозии сохраняют следы материалов и предметов, почти полностью уничтоженных временем: следы дерева и краски от ножен на лезвии кинжала, фактуру ткани и даже вышивку, в которую был завернут предмет при погребении, следы отделки поверхности другим металлом или материалом и пр. Корродированная поверхность археологического предмета может нести важную информацию для археолога или историка материальной культуры. Затем переходят к осмотру с помощью обычной или бинокулярной лупы МБС. Подбирая направление лучей осветителя, можно выявить фактуру поверхности, которая в художественных предметах из металла была весьма разнообразна и несла большую эстетическую нагрузку. На потемневшей поверхности или под слоем грязи она может быть плохо различима и при грубой очистке - уничтожена. Все существенные данные должны фиксироваться с помощью фотографий и заноситься в реставрационный паспорт. К бинокулярной лупе МБС выпускается фотонасадка МШ-5, дающая возможность проводить макросъемки. Если металлический предмет сложен по конструкции, допустима его разборка, изучение с помощью лупы необходимо проводить как до, так и после разборки. На скрытых до разборки поверхностях могут быть авторская разметка, даже надписи, следы от переделок и т.д.

Следующий этап - определение металла или типа сплава. Как мы уже говорили, не всегда возможно визуально отличить даже серебряный археологический предмет от бронзового, настолько он покрыт продуктами коррозии медной составляющей сплава.

Поэтому для археологического предмета надо сначала сделать пробную механическую макроскопическую расчистку скальпелем или другим острым предметом, чтобы обнажить поверхность металла. Тогда уже по цвету можно сказать, красная ли это медь, жёлтый сплав или белый. Дальнейшие определения металла проводятся простейшими химическими метода с набором незначительных количеств реактивов.

1) При этом надо учитывать возможное изменение цвета поверхности в результате избирательной коррозии или омеднение поверхности в результате электрохимической коррозии.

Определение меди в сплаве. На поверхность очищенного металла наносят каплю азотной кислоты, разведенной водой в соотношении 1:1. В капле должно наблюдаться газовыделение. Через несколько секунд после начала газовыделения каплю втягивают фильтровальной бумагой и держат это место бумаги над колбой, содержащей концентрированный раствор аммиака (удельный вес 0,8. При наличии меди в сплаве очень быстро обработанное парами аммиака пятно становится темно-голубым.

Определение бронзы и латуни. Для того, чтобы отличить бронзу (сплав меди с оловом) от латуни (сплава меда с цинком) нужно поместить приблизительно 0,05 г сплава в виде стружки или опилок в мензурку, добавить 10 мл азотной кислоты, разбавленной водой в соотношении 1:1, накрыть мензурку часовым стеклом. Когда основное количество сплава раствориться, нагреть жидкость почти до кипения на водяной бане и выдержать горячей 0,5 часа. Оловянистая бронза даст на дне белый осадок, в случае латуни - раствор останется прозрачным. Этот способ пригоден для определения двойных сплавов. Если же сплав содержит одновременно олово и цинк, то можно рекомендовать следующий способ, позволяющий определить в сплаве цинк. К предмету присоединяют положительный полюс сухой батарейки. Полоску фильтровальной бумаги пропитывают раствором серной кислоты и кладут на поверхность предмета. На бумагу помещают полоску металлической меди, которую соединяют с отрицательным полюсом батарейки на 15 секунд. Затем фильтровальную бумагу снимают, кладут на стекло и на нее капают аммиачным раствором тиоционата ртути. Пятно лилово-черного цвета указывает на присутствие цинка. Если цинк отсутствует, пятно будет желтым.

Определение никеля в сплаве. Для определения никеля на поверхность металла наносят каплю разбавленной азотной кислоты (1:1), выдерживают 10-15 сек. и снимают кусочком фильтровальной бумаги, которую держат над парами концентрированного аммиака до тех пор, пока капля не станет темно-голубой. затем на нее капают раствором 1%-ного диметилглиоксина в спирте. Если никель присутствует, то пятно окрасится в красный цвет.

Определение олова в сплаве. Готовят раствор из равных объёмов раствора, насыщенного сернистым газом, и раствора, полученного смешением концентрированной серной кислоты с водой в соотношении 1:3. Каплю этого раствора наносят на поверхность металла. При наличии в сплаве олова через несколько минут образуется желтовато-коричневое пятно, окруженное чёрным кольцом.

Определение свинца в сплаве. На поверхность металла кладут кристаллики хромовой кислоты, сверху наносят каплю ледяной уксусной кислоты. Через минуту добавляют каплю воды. Вокруг кристаллов образуется желтый осадок хромата свинца.

Определение сплава олово-свинец. Для идентификации можно применять пробы как для олова, так и для свинца. Желтый осадок, который лучше виден при нагреве, становится менее отчетливым по мере уменьшения свинца в сплаве.

Определение золотых сплавов. Многие сплавы меди похожи на золотые (например, некоторые латуни), но они легко определяются по химической пробе на медь. Если разбавленная азотная кислота (в соотношении 1:1) не реагирует с металлом, то это указывает на содержание в нем более 25% золота.

Определение позолоты. Определить следы позолоты можно одним из следующих способов.

1.Маленький кусочек стружки с поверхности изделия, снятой скальпелем, растворяют в царской водке (смесь азотной кислоты с соляной в соотношении 1:3); каплю анализируемого раствора разбавляют каплей 5%-ной соляной кислоты, добавляют каплю водного раствора индикатора родамина В и помещают смесь в микропробирку. Добавляют 8 капель бензола и смесь встряхивают; бензол при этом окрашивается в красный цвет, это свидетельствует о наличии ионов золота, что подтверждается оранжевой флуоресценцией под кварцевой лампой.

2.Готовят реагентную бумагу, пропитывая фильтровальную бумагу раствором двухлористого олова и высушивая ее. При нанесении на такую бумагу капли раствора, содержащего золото, образуется окрашенное пятно восстановленного золота.

3.На фильтровальную бумагу наносят каплю слабокислого раствора золота (капля раствора золота в царской водке разбавляется вдвое). На следующий день на бумаге появляется фиолетовое пятно золя золота. В этом случае бумага действует как восстановитель и адсорбент образовавшегося золя золота.

Определение серебряного сплава. Простейший качественный метод определения сплавов серебра состоят в следующем: на поверхность изделия наносят каплю красного прозрачного раствора, содержащего 4 мл серной кислоты, 3 г двухромовокислого калия, 32 мл воды. Чем качественнее сплав, тем интенсивнее становнтся окраска пятна. Присутствие достаточно большого количества меди в сплаве серебра определяют следующим образом: на поверхность металла помещают каплю 2%-ного раствора азотнокислого серебра и оставляют на 3-5 минут. Если в сплаве присутствует не менее 40% меди, то через лупу в капле будут видны мельчайшие серебряные кристаллы в виде дендритов (ветвистых кристаллов). Капля на высокопробном серебре останется прозрачной. Наличие серебра в низкопробных сплавах (до 600-й пробы) может быть установлено следующей капельной реакцией. Под действием на одно и то же место азотной, а затем соляной кислотой образуется белый творожистый осадок хлористого серебра, растворимый в избытке аммиака.

Определение железа. Железо при нагревании в соляной кислоте дает желтое окрашивание раствора. Наиболее просто определить железо магнитом. Однако надо помнить, что магнитные свойства кроме железа., проявляют цветные сплавы, если в них содержится железо, выделившееся в виде самостоятельной фазы. Если реставрируемый металлический предмет представляет интepec для истории металлургии или техники обработки металла, то пробы для спектрального анализа или кусочки для металлографического изучения рекомендуется взять во время реставрации, так как к предмету в это время имеется максимальный доступ и место отбора пробы можно сделать незаметным, после консервациипредмет должен быть неприкосновенным. Отбор проб для изучения должен проводиться с ведома и участием археолога или хранителя музея.

Исследование состава сплава и технологии изготовления даёт информацию, помогающую делать заключение о месте и предположительном времени изготовления предмета, однако пока ещё не существует способа абсолютной датировки металла.

Все эти исследования могут быть проведены самим реставратором в обычной музейной лаборатории. Однако есть исследования, которые могут оказать неоценимую услугу реставратору, но для проведения которых нужно специальное оборудование, умение работать на нем, расшифровывать полученные результаты. Реставратор должен знать о существовании таких методов и их возможностях, чтобы поставить задачу перед специалистами точных наук и уметь воспользоваться результатами подобных исследований.

Состав металла, включая микропримеси, может быть определен спектральным методом. Оптимальная навеска 10 мг. Можно брать меньшее количество металла, но при этом уменьшается точность анализа. Непосредственно на вещи состав может быть определен спектральным методом при лазерном отборе пробы, рентгенофлуоресцентным методом. Определение состава без отбора пробы, непосредственно на предмете, возможно только на небольших экспонатах, например; монетах.

Декоративную отделку другим металлом, чеканный или гравированный рисунок, места пайки, скрытые слоем продуктов коррозии, возможно выявить неразрушающим рентгеновским методом. Рентгеновский снимок является фотографическим изображением, образованным потоком рентгеновского излучения, который частично поглощается исследуемым предметом перед тем, как попасть на пленку, которая располагается за просвечиваемым предметом. На поглощение рентгеновских лучей влияет толщина слоя металла, различная поглощающая способность металла, использованного для отделки. Рентгенография имеет, таким образом, достоинства неразрушающего метода, дающего документальные сведения о предмете. Промышленность выпускает несколько типов установок, подходящих для таких исследований: "Мира-Зд" - работает в импульсном режиме и дает достаточно жесткое излучение; для изучения предметов небольшой толщины может использоваться установка марки "РЭНС-А". "Во всех случаях подходит мощная промышленная установка, применяемая в рентгеноскопии - "РУЛ".

Следующий этап работы реставратора - изучение сохранности предмета. Толщина и плотность продуктов коррозии, а также вид металла под коррозионным слоем определяются механической послойной расчисткой маленького кусочка поверхности. Наличие металлического ядра можно выявить осторожным простукиванием - глухой звук говорит о полностью минерализованном металле, звонкий - о сохранившемся металлическом ядре; прощупыванием гибкой иглой, применяемой в зубоврачебной практике или шабером; по удельному весу. Рентгеновское просвечивание позволяет увидеть минерализованные участки, на которых металл полностью окислился.

Проведенные исследования должны дать сведения о металле и технике изготовления предмета, а также представление об объёме реставрационных работ и последовательности операций.


3. ОБЩИЕ МЕТОДЫ ОЧИСТКИ ОТ ЗАГРЯЗНЕНИЙ И ПРОДУКТОВ КОРРОЗИИ

Очистка предмета от загрязнения, потемнения и наслоений продуктов коррозии является одной из главных и ответственных реставрационных операций, от успешного проведения которых зависит внешний вид предмета и в большей степени его дальнейшая сохранность. В любом случае загрязнения не должны оставаться на предмете под предлогом, что они являются доказательством подлинности, так как последняя может быть установлена с помощью физико-химических критериев. Перед удалением загрязнения необходимо убедиться, что под слоем грязи нет искусственной патины, закрывающей всю поверхность, или нанесенной для выявления рельефа, или пасты, втертой в гравировку. Вид, который должен иметь предмет к концу очистки, зависит от сохранности предмета. Если металлическое ядро железного оружия достаточно хорошо сохранилось, следует обнажить металл, удалив все продукты коррозии. Если в результате очистки получится изъеденный коррозией бесформенный кусок металла, то следует выбрать другой путь обработки, а не полное удаление минеральных наслоений. При реставрации археологической бронзы надо помнить, что операции расчистки необратимы. Удалить полностью поверхностные наслоения, которые образовывались веками при взаимодействии металла с внешней средой и которые никакими способами нельзя получить искусственно (речь идет не только о составе продуктов коррозии, но и о характере их распре деления на поверхности) - это значит, раз и навсегда уничтожить археологический вид предмета. Надо знать, что охранительный принцип реставрации гораздо более трудный, требующий больших затрат времени, внимания и навыков реставратора, но и более благодарный.

3.1. Очистка от загрязнений

Загрязнения на металлических предметах состоят обычно из жировых наслоений, смешанных с пылью, частицами органически веществ, копотью и пр. Все жировые загрязнения могут быть отнесены к двум основным группам: жиры минерального происхождения, удаляемые растворителями, и жиры животного и растительного

происхождения, которые взаимодействуют с водными растворами щелочей или солей щелочных металлов, образуя растворимые в тёплой воде мыла. На старых предметах из металла возможно наличие обоих видов жиров, смешанных с пылью.

Очистка проводится либо жидкими веществами - органическими растворителями или водными растворами неорганических соединений, либо механическим или химико-механическим способом с помощью порошков и паст. Водные растворы удобны, но могут вызывать коррозию очищаемых металлических предметов. Органические растворители обладают высокой очищающей способностью и практически не оказывают коррозионного воздействия на поверхность очищаемого предмета, но дороги и часто токсичны, огнеопасны. Режим обработки, концентрация раствора, температура, длительность обработки и т.д. зависят от характера выбранного состава, степени и вида загрязнения, размеров предмета и устанавливается в каждом конкретном случае с помощью пробных расчисток.

Очистка органическими растворителями основана на их способности растворять вещества жирового характера, масла, консервирующие покрытия, удаляя их с обрабатываемой поверхности. Предметы очищают погружением, протиранием, компрессами.

Возможно применение следующих растворителей: 1) спирты: этиловый, изоамиловый, бутиловый, этиленгликоль; 2) ацетон, метилэтилкетон (МЭК); 3) ароматические углеводороды: толуол, ксилол; 4) сложные смеси углеводородов: бензин, уайт-спирит;

5) хлорированный углеводород - перхлорэтилен 6) сложные эфиры: метилацетат, амилацетат, этилацетат.

Предметы со сложной декоративной отделкой поверхности - искусственная патина, втертая в рисунок паста, наличие красочного слоя, сочетание металла с материалами органического происхождения - очищать от загрязнений можно только органическими растворителями, начиная с наиболее безвредного как для реставратора, так и для предмета - этилового спирта, переходя к более сильным.

Особую роль среди других компонентов очищающих растворов играют поверхностно-активные вещества (ПАВ). ПАВ понижают поверхностное и межфазное натяжение, улучшают смачивание поверхности, оказывают диспергирующее (расклинивающее) действие на твердые загрязнения и эмульгирующее - на жидкие, играют роль пенообразователей.

При средней загрязненности и невозможности обработать предмет погружением его очищают, протирая тампоном, смоченным следующим составом: полиакриламид 1%-ный - 15 мл, диталан ОПС - 55 мл, ацетон - 15 мл, этанол - 15 мл. Очистку проводят дважды, по мере загрязнения тампоны заменяют, хорошо очищают комбинированные составы - эмульсии, состоящие из двух фаз - водной и неводной. Например, вода и керосин (1:3) с добавкой 2% по весу ОП-7 или ОП-10. В качестве годного средства для очистки сильно загрязненных предметов можно рекомендовать следующие составы:

1) жидкое стекло - 25-50 г/л, кальцинированная сода - 40-50 г/л, тринатрий фосфат - 25-30 г/л или

2) кальцинированная сода - 20-25 г/л, ОП-7 - 5-10 г/л, тринатрийфосфат - 20-25 г/л.

Повышение температуры раствора до 60-70°С ускоряет очистку. Предмет погружают в раствор и очищают щетинной щеткой. Возможно применение моющего средства «Триалон-10» с добавлением 3-4 г/л ОП-7, "Прогресс" и стиральных порошков, содержащих энзимы, - "Ока" и "БИО-С".

Для очистки металлических изделий от жировых и водорастворимых загрязнений можно использовать водный раствор поверхностно-активного вещества с углеводородами, например, бензолом, керосином, уайт-спиритом с добавлением маслорастворимого ингибитора коррозии.

Состав раствора: поверхностно-активное вещество сульфонал 20 г/л, маслорастворимый ингибитор МСДА-11 - 20 г/л, соотношение водной и углеводородной фаз (5-1) : (1-2)

Перед общей очисткой от загрязнений предмета из металла необходимо сделать пробную расчистку. Подбирают очищающий раствор, начиная с более слабого, переходя затем к более сильному. Например, первую пробу делают тампоном, смоченным в уайт-спирите. Если грязь не убирается сразу, то на поверхность накладывают компресс. После того, как станет ясна авторская отделка поверхности, наличие патины и пр., можно приступать к общей очистке.

Для удаления старой краски рекомендуются фирменные растворители, состоящие из смеси различных органических веществ. Растворители 646, 648, Р-4, Р-5 растворяют большинство красок, смол и лаков. Скорость удаления старой краски-зависит от многих причин, поэтому лучше удалять ее с помощью компрессов, определяя время выдержки опытным путем.

3.2. Очистка от продуктов коррозии

Электролитическая очистка с применением электрического тока от внешнего источника относится к универсальным сильно действующим способам, применяемым для очистки изделий из любых металлов, при условии хорошей сохранности предмета. Обычно этим способом очищают достаточно крупные предметы (оружие, орудия труда, предметы домашнего обихода) , если они имеют хорошо сохранившуюся металлическую сердцевину, так как очистка происходит до полного обнажения металлической поверхности или одновременно однородные мелкие предметы с одинаковой сохранностью. Этот метод позволяет наиболее полно очистить металл от продуктов коррозии, выводя их из пор и трещин.

Очистка осуществляется следующим образом. Предмет, к которому присоединен отрицательный полюс источника постоянного тока, погружают в ванну, заполненную электролитом; положительный полюс источника питания присоединяют к вспомогательному электроду (Рис. 2). При прохождении тока на катоде -предмете создаются условия для восстановительных процессов, при которых высшие окислы металлов переходят в низшие, более растворимые. Кроме того, выделяющийся молекулярный водород оказывает активное механическое воздействие, в результате которого происходит разрыхление коррозионной корки и отслаивание ее от поверхности металла. При этом нет опасности повреждения обнажившейся металлической сердцевины. В качестве источника питания используют выпрямитель постоянного тока ВИП-025 или типа ВС. Главным фактором, влияющим на электродные процессы, является сила тока. Она зависит от сопротивления электролита, размеров предмета и вспомогательного электрода и колеблется в зависимости от электрического сопротивления слоя продуктов коррозии.

На Рис.2. Схема электролитической очистки

Рабочая плотность тока должна быть до 10 А/дм2. В процессе обработки плотность тока увеличивается по мере удаления наслоений, поэтому для регулировки плотности тока в цепь включают внешнее сопротивление - реостат, или ток регулируется настройкой вырямителя. Для вспомогательного электрода - анода лучше у использовать пластину из нержавеющей стали, в качестве ванны емкость из стекла или химически стойкой органики, например, винипласта. Удобно использовать ванну из нержавеющей стали этом случае непосредственно к ней подключают положительный полюс источника питания и она служит анодом. На ванну кладут латунные или медные токопроводящие штанги, в случае металлической ванны - на изоляционные прокладки. К штангам на проволоке подвешиваются электроды. При использовании в качестве анода железа для предовращения засорения электролита шламом электроды следует поместить в нейлоновые чехлы. Некоторые авторы рекомендуют угольные электроды. Однако ими можно пользоваться только в отдельных случаях, которые будут оговорены особо. Чаще всего в качестве электролита используется раствор едкого натра. Кислыми ваннами пользуются редко.

При обработке массовых мелких предметов их кладут в металлическую корзину, которая присоединяется к отрицательному полюсу источника питания. Корзину надо периодически встряхивать для более равномерной обработки предметов. Длительность очистки зависит от характера и толщины коррозионных наслоений. Этот процесс можно ускорить, чередуя электролитическую очистку с механической, вынимая для этого предметы из ванны обязательно при включенном токе, иначе на поверхности предмета образуется металлический налет.

По мере засорения электролита шламом его надо заменять новым, электроды или стенки ванны очищать от отложений. Электрические контакты должны быть всегда зачищенными, поверхность обрабатываемого предмета в месте контакта - очищена от коррозии

Общая продолжительность обработки для разных предметов настолько различна, что невозможно дать определенные рекомендации. Во всяком случае для дальнейшей сохранности предмета важно удалить все продукты коррозии до конца, так как не удаленные продукты коррозии могут дать в дальнейшем рецидивы. Чем длительнее процесс, тем полнее удаляются все активаторы коррозии. Очистку считают законченной, когда на предмете нет следов коррозии и поверхность плотно покрыта пузырьками газа. Процессы электролиза могут сопровождаться одновременным образованием водорода и кислорода. Поэтому операцию электролитической очистки надо проводить в вытяжном; шкафу, чтобы избежать образования и скопления взрывчатой смеси.

Электрохимическая очистка - катодное удаление продуктов коррозии без внешнего источника электрического тока. Для этого составляется электрохимическая система из металлического предмета, который надо очистить, металла, обладающего более электроотрицательным потенциалом по сравнению с металлом изделия, и электролита. Процессы, происходящие на металле при этом способе, не отличаются от процессов очистки при подаче тока от внешнего источника тока.

Электрохимическая обработка является более "мягким" способом очистки. Ее можно использовать для археологического металла в том случае, если металлическое ядро отсутствует. По сравнению с электролитической очисткой процесс идет медленнее, но равномернее по всей поверхности, при этой обработке исключается опасность повреждения поверхности обрабатываемого предмета. Этим методом можно обрабатывать мелкие тонкие предметы.

В качестве анодного металла используются цинк или алюминий в виде гранул, стружки или порошка, фольги. Гранулированный цинк можно приготовить самим следующим образом. Металл расплавляют в железном сосуде (температура плавления цинка ) и сливают в ведро с холодной водой. Если необходимо иметь цинковый порошок, то гранулированный цинк растирают в железной ступке до необходимой степени зернистости. Цинковая пыль менее эффективна, так как она легко уплотняется.

Выбор вида анодного металла зависит от формы предмета, рельефа и характера коррозионного слоя. Важно, чтобы постоянно был хороший контакт двух металлов (анодного и катодного).

В качестве электролита используют 5%-ный раствор едкого натра или 10%- ную серную кислоту. Если предмет, кроме солей металла, покрыт известковыми или силикатными наслоениями, то результат будет эффективнее при использовании 10%-ной серной кислоты

Очистку предмета или группы однородных предметов проводят следующим способом. Предметы кладут в железную или термостойкую стеклянную посуду, засыпают гранулированным металлом или обертывают стружкой, заливают электролитом. Нагревание ускоряет очистку. При плотном толстом слое продуктов коррозии для более надежного контакта анодного металла с металлическим ядром и ускорения очистки с небольшого участка поверхности предмета механически счищают коррозионный слой. Цинк в процессе обработки покрывается нерастворимыми гидрооксидами, что замедляет процесс очистки. Для повторного использования его обрабатывают слабым раствором соляной кислоты, промывают в проточной воде, а затем в дистиллированной и просушивают.

В процессе электрохимической обработки продукты коррозии размягчаются, разрыхляются, их легко снять щеткой под струей воды. Если за один цикл металл не очистился, то обработку повторяют, сменив анодный металл и раствор электролита. На поверхности металла нельзя оставлять следы первоначальных продуктов коррозии, так как в них могут находиться активные хлористые соединения. Иногда восстановление продуктов коррозии происходит до металла, который осаждается поверх неудаленных коррозионных продуктов, замедляя очистку. Восстановленный металл слабо сцеплен с предметом, его необходимо удалить механически и обработку продолжить. Нагревание электролита до кипения предотвращает образование восстановленного металла. Электрохимическую обработку необходимо вести в вытяжном шкафу, так как выделяющиеся испарения чрезвычайно вредны.

После электрохимической или электролитической обработки поверхность металла находится в активном состоянии, поэтому нельзя делать перерыва между очисткой и промывкой. После очистки предметы должны быть немедленно промыты, и весь предусмотренный комплекс реставрационных и консервационных мероприятий закончен без промедления.

3.3. Промывка

После электрохимической или электролитической обработок, как и после любой химической очистки, предмет должен быть промыт. Обычная промывка в проточной воде не дает должных результатов, так как остатки реактива с растворенными в нем продуктами удерживаются в пористом металле капиллярными силами, которые обычная промывка преодолеть не может. Устранить это явление помогает так называемая «интенсивная промывка», предложенная P.M. Органом. Предмет рекомендуется длительно вымачивать в дистиллированной воде, чередуя нагрев и охлаждение.

При нагреве металл расширяется и в поры и трещины, которые имеются в продуктах коррозии и частично разрушенном слое, заливается чистая дистиллированная вода, которая растворяет остатки реактива, использованного при очистке, растворенные продукты реакции и остатки не удаленных еще солей металла, в том числе хлоридов. При охлаждении капилляры сжимаются, и из них выталкивается промывочная вода. При последующем цикле нагревания в них втягивается новая порция чистой воды.

Применяя многократное чередование нагрева и охлаждения и периодической заменой воды, можно добиться практически полностью растворимых хлористых соединений. Этот метод применим для всех металлов за исключением свинца, так как горячая вода образует на свинце молочно-белую пленку гидроокиси. Для свинца нужна другая обработка, о чем будет сказано в соответствующей главе.

Длительное кипячение в дистиллированной воде, которое обычно применяют реставраторы, менее результативно, чем метод "глубокой промывки". Кроме того, при кипячении образующиеся пузырьки воздуха механически действуют на хрупкий металл, образуются новые трещины, прочность снижается. Однако надо отметить, что любая промывка с нагреванием и даже без нагревания приводит к некоторому ослаблению корродированного металла. Чтобы проверить полноту промывки от очищающего раствора, после промывки к влажной поверхности прикладывают универсальную индикаторную бумагу, цвет которой зависит от кислотности среды. При достаточной промывке индикаторная бумага не дает цветной реакции. Однако индикаторная бумага не чувствительна к присутствию хлоридов в промывочной воде.

Наличие хлор-иона в промывочной воде определяют следующим образом: в пробирку отбирают 10 мл промывочной воды, добавляют несколько капель азотной кислоты и несколько капель 1%-ного раствора азотнокислого серебра, пробирку закрывают пробкой (ни в коем случае пальцем) и перемешивают. При наличии в воде самых незначительных количеств хлоридов через несколько минут вода помутнеет вследствие образования нерастворимого хлорида серебра, который хорошо виден на темном фоне. Этим способом можно обнаружить десятитысячные доли процента хлоридов в воде. Одновременно должна быть проведена "холостая" проба: в 10 мл дистиллированной воды добавляются реактивы для определения хлор-ионов в тех же количествах, что и при определении их в промывочной воде. Проба не должна давать помутнения.

Раствор азотнокислого серебра должен храниться в темном сосуде во избежание восстановления серебра на свету. При обнаружении следов хлоридов промывку надо продолжить до полного исчезновения помутнения при контроле пробы.

Промывка вообще завершает любую очистку .металлического предмета и является одной из ответственных операций для успешной сохранности. Процесс этот длительный, но доводить его нужно непременно до конца, до полного удаления следов очищающих реагентов и исчезновения хлоридов в промывочной воде.



Методические рекомендации ВНИИР.pdf
 Описание:

Скачать
 Имя файла:   Методические рекомендации ВНИИР.pdf
 Размер файла:  444.47 KB
 Скачано:  12 раз(а)

Вернуться к началу
Профиль Профиль VIOLITY
Показать сообщения:   
Новая тема    Ответить       Список форумов Виолити - Антиквариат -> Реставрация и восстановление Часовой пояс: GMT + 2
На страницу Пред.  1, 2
Страница 2 из 2

 
Перейти:  
Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете голосовать в опросах
Вы не можете вкладывать файлы
Вы можете скачивать файлы